
"

 Chapter 5: Software
effort estimation- part 2

NET481: Project Management

 Afnan Albahli

Topics to be covered

  Difficulties of Estimation

  Where are estimates done?

  Problems of over- and under- estimate

  Estimation techniques

SPM (5e) Software effort estimation©
The McGraw-Hill Companies, 2009 2

Albrecht Function Point Analysis

  FP is A top-down method.

  Devised by Allan Albrecht during his work for IBM.

  Why FP?

 To be able to quantify the functional size of programs

 independently of the programming language used.

SPM (5e) Software effort estimation©
The McGraw-Hill Companies, 2009 3

Albrecht Function Point Analysis (cont’d)

  The basis of FP analysis is that: An Information System consists of

five major components or external user types or functions that are of

benefit to the user.

  Transaction functions:

  External input types

•  Input transactions that update internal computer files.

  External output types

•  Are transactions where data is output to the user (printed report)

  External inquiry types

•  Are transactions initiated by the user which provide information but not update the

internal files.

•  The user inputs some information that directs the system to the details required.
4

Albrecht Function Point Analysis (cont’d)

  Data functions:

  Logical internal file types

  The standing files used by the system.

  File here refers to a group of data items accessed together.

  It may be made up of one or more record types.

  External interface file types

  Allow for output and input that may pass to and from other computer systems.

  Files shared between applications would also be counted here.

5

  The FP approach:

1. Identify each external user type in your application.

2. Determine the complexity of each user type (high, average or low)

3. FP score for of each external user type = Multiply the weight of each

complexity by the count of each external user type that has that complexity.

4. FP count = summation of all the FP scores.

FP count indicates the size of the information processing.

SPM (5e) Software effort estimation©

The McGraw-Hill Companies, 2009 6

Albrecht Function Point Analysis (cont’d)

User Type Complexity

  For the original function points defined by Albrecht, the complexity

of the components (external user types) was intuitively decided.

  Now there is a group called (IFPUG) international FP user group

have put rules governing the complexity and how it is assessed.

  The Albrecht FP is often refereed to as the IFPUG FP method.
7

IFPUG File Type Complexity

8

IFPUG File Type Complexity (cont’d)

  The boundaries shown in this table show how the complexity level for the logical

internal files is decided on.

  There are similar tables for external inputs and outputs.

  Record Type is also called Record Element Type (RET)

  Data Type is also called Data Element Type (DET
9

Function Points Mark II

  Developed by Charles Symons in 1991.

  It is not a replacement to the Albrecht method (the IFPUG method)

  FP Mark II as Albrecht FPs measures the information processing

size in FPs.

SPM (5e) Software effort estimation©
The McGraw-Hill Companies, 2009 10

Function Points Mark II (cont’d)

  The idea of FP Mark II: an information system contains transactions

which have the basic structure shown below:

11

Function Points Mark II (cont’d)

  FP = Wi * (number of input data element types) +

 We * (number of entity types referenced) +

 Wo * (number of output data element types)

  Wi, We, Wo are weightings derived by asking developers the proportions

of effort spent in previous projects developing the code dealing with:

  Inputs

  Accessing and modifying stored data

  Processing outputs

12

Function Points Mark II (cont’d)

  The proportions of effort are then normalized into ratios or weightings,

which add up to 2.5.

  2.5 was adopted to produce FP counts similar to the Albrecht equivalents.

  Industry averages for the weights:

Wi = 0.58 , We= 1.66 , Wo = 0.26 they add up to 2.5

13

Example

14

Answer

  FP = Wi * (number of input data element types) +
 We * (number of entity types referenced) +
 Wo * (number of output data element types)

  Wi = 0.58 , We= 1.66 , Wo = 0.26
  number of input data

eleme
nt types = 3 (Invoice number, Date received, Cash received)

 
num
ber of entity types referenced = 2 (Invoice and Cash- receipt)

  number of output data element types = 1(error message)
  FP = (0.58*3) + (1.66*2) + (0.26*1) = 5.32

SPM (5e) Software effort estimation©
The McGraw-Hill Companies, 2009 15

COSMIC Full Function points

  COSMIC FFPs stands for Common Software Measurement Consortium

Full Function Points.

  This approach is developed to measure the sizes of real-time or

embedded systems.

  In COSMIC method: the system architecture is decomposed into a

hierarchy of software layers.

SPM (5e) Software effort estimation©
The McGraw-Hill Companies, 2009 16

COSMIC Full Function points
(cont’d)

They define 4 data groups that a software component can deal with:

  Entries (E). effected by sub-processes that moves the data group into the SW

component in question from a user outside its boundary.

  Exits (X). effected by sub-processes that moves the data group from the SW

component into a user outside its boundary.

  Reads (R). data movements that move data groups from a persistent
storage (DB) to the SW component.

  Writes (W). data movements that move data groups from the SW

component to a persistent storage

17

COSMIC Full Function points
(cont’d)

  The overall FFP is derived by simply summing the counts of the four groups

all together.

  The method doesn’t take account of any processing of the data groups once

they are moved into the software component.

  It is not recommended for systems that include complex mathematical

algorithms.

18

COCOMO II

  It is a parametric productivity model.

  It is developed by Barry Boehm in the late 1970s.

  COCOMO is short for COnstructive COst Model.

  It refers to a group of models.

  The basic model was built around the following equation:
  Effort= c(size)k
  The effort is measured in person-months (pm), consisting of units of 152 working
hours.
  The size is measured in (Kdsi) thousands of delivered source code of instructions.
  c and k are constants.

19

COCOMO II (cont’d)

  The first step is to derive an estimate the system size in terms of kdsi.

  C and k constants values depend on classifying the system in

Boehm’s terms as either:

  Organic mode or

  Embedded mode or

  Semi-detached mode.

SPM (5e) Software effort estimation©
The McGraw-Hill Companies, 2009 20

COCOMO II (cont’d)

  Organic mode.
  Small team,

  Small system,

  Interface requirements flexible,

  In-house software development.

  Examples:

Systems such as payroll, inventory.

21

COCOMO II (cont’d)

  Embedded mode.

  Product has to operate within very tight constraints,

  the project team is large,

  development environment consists of many complex interfaces,

  Changes are very costly.

  Examples:

Real-time systems such as those for air traffic control, ATMs,

or weapon systems.

22

COCOMO II (cont’d)

  Semi-detached mode.
  Combined elements from the two above modes or characteristics

that come in between.

  Examples:

Systems such as compilers, database systems, and editors.

23

COCOMO II (cont’d)

  c and k values

24

COCOMO II (cont’d)

  COCOMO II takes into account that there is a wider range of process

 models in use than before.

  COCOMO II is designed to accommodate the fact that estimates will be

needed at different stages of the system life cycle.

  COCOMO II has models for three different stages:

  Application composition.

  Early design.

  Post Architecture.

25

