Chapter 5: Software
effort esttimation- part 2

NET481: Project Management

Afnan Albahli

Topics to be covered

O

¢ Estimation techniques

SPM (5e) Software effort estimation©
The McGraw-Hill Companies, 2009

Albrecht Function Point Analysis

¢ FPi1s A top-down metho&. '
¢ Devised by Allan Albrecht during his work for IBM.
¢ Why FP?
To be able to quantify the functional size of programs

independently of the programming language used.

SPM (5e) Software effort estimation©
The McGraw-Hill Companies, 2009

Albrecht Function Point Analysis (cont’d)

An Information System consists of

five major components or external user types or functions that are of

benefit to the user.

¢ Transaction functions:
External input types
Input transactions that update internal computer files.
External output types
Are transactions where data is output to the user (printed report)

External inquiry types

Are transactions initiated by the user which provide information but not update the

internal files.

The user inputs some information that directs the system to the details required.
4

Albrecht Function Point Analysis (cont’d)

¢ Data functions:
¢ Logical internal file types
The standing files used by the system.
File here refers to a group of data items accessed together.
It may be made up of one or more record types.
¢ External interface file types
Allow for output and input that may pass to and from other computer systems.

Files shared between applications would also be counted here.

5

Albrecht Function Point Analysis (cont’d)

1. Identify each external user type in your application.

2. Determine the complexity of each user type (high, average or low)

3. FP score for of each external user type = Multiply the weight of each
complexity by the count of each external user type that has that complexity.
4. FP count = summation of all the FP scores.

FP count indicates the size of the information processing.

6 SPM (5e) Software effort estimation©
The McGraw-Hill Companies, 2009

User Type Complexity

¢ For the original function points defined by Albrecht, the complexity

of the components (external user types) was intuitively decided.

¢ Now there 1s a group called IFPUG) international FP user group

have put rules governing the complexity and how it is assessed.

é The Albrecht FP is often refereed to as the IFPUG FP method.

7

IFPUG File Type Complexity

Table 1

External input

types

External output 4 5 7
types

External inquiry 3 4 6
types

Logical internal 7 10 15
file types

External interface 5 7 10
file types

IFPUG File Type Complexity (cont’d)

1 Low low Average
2to5 Low Average High
>5 Average High High

¢ The boundaries shown in this table show how the complexity level for the logical

internal files 1s decided on.

¢ There are similar tables for external inputs and outputs.
¢ Record Type i1s also called Record Element Type (RET)

¢ Data Type 1s also called Data Element Type (DET

9

Function Points Mark I1

¢ Developed by Charles Symons in 1991.

¢ It is not a replacement to the Albrecht method (the IFPUG method)

¢ FP Mark II as Albrecht FPs measures the information processing
size in FPs.

SPM (5e) Software effort estimation©

10 The McGraw-Hill Companies, 2009

Function Points Mark II (cont’d)

¢ The idea of FP Mark II: an information system contains transactions
which have the basic structure shown below:

Datastore

|

Input Output
From user —» Process —» Return to user

11

Function Points Mark II (cont’d)

¢ FP = Wi * (number of input data element t;pes) +
We * (number of entity types referenced) +
Wo * (number of output data element types)
¢ Wi, We, Wo are weightings derived by asking developers the proportions
of effort spent in previous projects developing the code dealing with:
v Inputs
v Accessing and modifying stored data

v Processing outputs

12

Function Points Mark II (cont’d)

¢ The proportions of effort are then normalized into ratios or weightings,

which add up to 2.5.
¢ 2.5 was adopted to produce FP counts similar to the Albrecht equivalents.

¢ Industry averages for the weights:

Wi=0.58, We=1.66, Wo = 0.26 they add up to 2.5

13

A cash receipt transaction in the IOE maintenance accounts subsystem accesses two
entity types — INVOICE and CASH-RECEIPT.
The data inputs are:

Invoice number
Date received
Cash received
If an INVOICE record is not found for the invoice number then an error message is
issued. If the invoice number is found then a CASH-RECEIPT record is created. The error

message is the only output of the transaction. The unadjusted function points, using the
industry average weightings, for this transaction would therefore be:

14

FP = W1 * (number of —input data element tyes) +
We * (number of entity types referenced) +
Wo * (number of output data element types)

W1 =0.58, We=1.66, Wo =0.26

number of input data
eleme . . .
nt types = 3 (Invoice number, Date received, Cash received)

num
ber of entity types referenced = 2 (Invoice and Cash- receipt)

number of output data element types = 1(error message)
FP = (0.58*3) + (1.66*2) + (0.26*1) = 5.32

SPM (5e) Software effort estimation©

15 The McGraw-Hill Companies, 2009

COSMIC Full Function points

& COSMIC FFPs stands for Common Software Measurement Consortium

Full Function Points.

¢ This approach is developed to measure the sizes of real-time or

embedded systems.

¢ In COSMIC method: the system architecture is decomposed into a

hierarchy of software layers.

SPM (5e) Software effort estimation©

16 The McGraw-Hill Companies, 2009

COSMIC Full Function points

They define 4 data groups th av oftware com?(:nent can deal with:

¢ Entries (E). effected by sub-processes that moves the data group into the SW
component in question from a user outside its boundary.

¢ Exits (X). effected by sub-processes that moves the data group from the SW
component into a user outside its boundary.

¢ Reads (R). data movements that move data groups from a persistent

storage (DB) to the SW component.

¢ Writes (W). data movements that move data groups from the SW
component to a persistent storage

17

COSMIC Full Function points

(cont’d)

¢ The overall FFP 1s derived by simply summing the counts of the four groups

all together.

¢ The method doesn’t take account of any processing of the data groups once

they are moved into the software component.

¢ It is not recommended for systems that include complex mathematical

algorithms.

18

COCOMO II

¢ It 1s a parametric productivity model.

¢ It is developed by Barry Boehm in the late 1970s.

& COCOMO is short for COnstructive COst Model.

¢ It refers to a group of models.

¢ The basic model was built around the following equation:
Effort= c(size)k
The effort is measured in person-months (pm), consisting of units of 152 working
hours.
The size is measured in (Kdsi) thousands of delivered source code of instructions.
¢ and k are constants.

19

COCOMO II (cont’d)

¢ The first step 1s to deriveéﬂ estimate th:e system size 1n terms of kdsi.
¢ C and k constants values depend on classifying the system in
Boehm’s terms as either:

v Organic mode or

v Embedded mode or

v" Semi-detached mode.

SPM (5e) Software effort estimation©

20 The McGraw-Hill Companies, 2009

COCOMO II (cont’d)

¢ Organic mode.
Small team,
Small system,
Interface requirements flexible,

In-house software development.
¢ Examples:

Systems such as payroll, inventory.

21

COCOMO II (cont’d)

¢ Embedded mode.
Product has to operate within very tight constraints,
the project team 1is large,
development environment consists of many complex interfaces,

Changes are very costly.
¢ Examples:
Real-time systems such as those for air traffic control, ATMs,

Or weapon systems.

22

COCOMO II (cont’d)

¢ Semi-detached mode.
Combined elements from the two above modes or characteristics

that come in between.

¢ Examples:

Systems such as compilers, database systems, and editors.

23

COCOMO II (cont’d)

¢ c and k values

e
e =) ' i
E el - =) b

COCOMO II (cont’d)

& COCOMO II takes into account that there 1s a wider ange of process

models 1n use than before.

¢ COCOMO II 1s designed to accommodate the fact that estimates will be

needed at different stages of the system life cycle.

¢ COCOMO II has models for three different stages:
Application composition.
Early design.
Post Architecture.

25

